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Bayesian methods for analysing ringing data
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abstract A major recent development in statistics has been the use of fast computational

methods of Markov chain Monte Carlo. These procedures allow B ayesian methods to be

used in quite complex modelling situations. In this paper, we shall use a range of real data

examples involving lapwings, shags, teal, dippers, and herring gulls, to illustrate the power

and range of B ayesian techniques. The topics include: prior sensitivity; the use of reversible-

jump MCMC for constructing model probabilities and comparing models, with particular

reference to models with random eþ ects; model-averaging; and the construction of Bayesian

measures of goodness-of-® t. Throughout, there will be discussion of the practical aspects of

the work Ð for instance explaining when and when not to use the BUGS package.

1 Introduction

The paper by Racine et al. (1986) provided a clear signal that Bayesian methods

were no longer a branch of academic statistics, as in, for example, Lindley (1965).

The subsequent arrival of Markov chain Monte Carlo (MCMC) procedures (see

for example, Smith & Gelfand (1992)), coupled with greatly increasing computer

speeds, have resulted in the `Bayesian boom’ , described by Malako þ (1999).

Although the new methodology is now established in areas such as medical statistics

(see Gilks et al., 1996), Anderson & Burnham (1999) comment that `these methods

remain relatively unknown to biologists’ . There has, however, been some Bayesian

analysis of data from previously marked animals. The papers by Castledine (1981),

Smith (1988), Underhill (1990), Bolfarine et al. (1992), George & Robert (1992),

Garthwaite et al. (1995), Madigan & York (1997) and Lee & Chen (2000) have as

their primary emphasis the estimation of population size, while Janz (1980), Free-

man (1990), and Link & Cam (2000), consider estimation of survival probabilities.
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Dupuis (1995) and King & Brooks (2001) provide procedures for multi-site models,

in which it is necessary to estimate probabilities of movement between sites.

In this paper, we provide several examples of the use of MCMC for analysing

mark recovery and recapture data. We start, in Section 2, with an application to

mark- recapture- recovery data. In this example we consider only one model; in

practice we need to consider a range of alternative models for any data set. In

Section 3 we present several alternative models for a mark- recovery data set, and

demonstrate how posterior model probabilities can be estimated. In this case, model

averaging is not needed; in Section 4, however, we use model averaging for a mark-

recapture data set. In Section 5 we show how Bayesian methods are easily used to

incorporate random eþ ects, and in Section 6 we use reversible jump Markov chain

Monte Carlo to produce posterior model probabilities in an example with individual

covariates. In the general discussion of Section 7, we cover prior sensitivity and

computational aspects, which both relate to using Bayesian methods in practice.

Throughout, the emphasis is on applied modelling, and we do not provide much

technical detail. We do not discuss how prior distributions may be elicited, using

the opinions of experts (see O’ Hagan, 1998 for a discussion), but emphasize, when

appropriate, whether results are sensitive to the choice of prior distributions.

This paper uses examples to illustrate the operation of modern Bayesian pro-

cedures. Many of the examples are historical, in that they were collected, and

originally analysed, several years ago. However, we shall also consider current data

sets on the survival of British birds, which are of topical interest, and each year

sees the data extending in time. The ® rst example, which we shall now consider,

is of this form.

2 The survival of shags (Phalacrocorax aristotelis)

Catchpole et al. (1998) analyse nine years of mark- recapture- recovery data on

shags ringed on the Isle of May in the Firth of Forth, Scotland. In total, 8637

birds were marked in the study, comprising 1087 breeding adults and 7550 pulli.

The model they chose to describe the data has year-dependent ® rst-year survival

probabilities, { u 1,t}; a separate survival probability u imm for birds aged 1 and 2

years; a survival probability u a associated with all birds over the age of 3; age-

dependent recapture probabilities p i , 0 < i < 2, for birds aged 0- 2; a year-dependent

adult recapture probability, { pa, t }; and a year-dependent recovery probability, { k t}.

This results in a model with 32 identi® able parameters in total. The model was

® tted to the data using classical maximum-likelihood (ML). Although the model-

® tting could be accomplished by using MARK (White & Burnham, 1999), Catch-

pole et al. (1998) maximized directly a likelihood that was speci® ed via a set of

su ý cient matrices, a point to which we shall return later in the paper. We note

that there have been very many other papers dealing with mark- recapture- recovery

data, a particularly important and in¯ uential one being by Burnham (1993). In

Table 1 we give the ML estimates of the parameters, along with estimated

standard errors, which result from inverting a standard, second-order diþ erence

approximation to the Hessian matrix, evaluated at the ML estimate.

As is now well known, a Bayesian analysis updates an experimenter’ s beliefs

about a parameter vector h , originally expressed through a prior distribution p( h ),

after the data x have been observed. If we write p ( h ½ x) as the posterior distribution

for h , then Bayes’ theorem tells us simply that

p ( h ½ x)µ L(x ½ h )p( h )
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Table 1. Maximum likelihood parameter estimates, together with estimated asymptotic standard errors

for the shags. The mean ® rst year survival probability is estimated by u Å 1 5 R u 1, t /9. From Catchpole et

al. (1998)

Survival Recapture Recovery

Estimate St.Err. Estimate St.Err. Estimate St.Err.

u 1,1 0.325 0.037 p1 0.0008 0.0005 k 1 0.146 0.016

u 1,2 0.439 0.035 p2 0.011 0.002 k 2 0.116 0.012

u 1,3 0.193 0.035 p3 0.034 0.005 k 3 0.121 0.014

u 1,4 0.732 0.064 pa ,1 0.363 0.052 k 4 0.093 0.018

u 1,5 0.441 0.051 pa ,2 0.462 0.034 k 5 0.117 0.014

u 1,6 0.613 0.088 pa ,3 0.060 0.014 k 6 0.046 0.010

u 1,7 0.397 0.076 pa ,4 0.012 0.005 k 7 0.044 0.008

u 1,8 0.231 0.114 pa ,5 0.081 0.011 k 8 0.097 0.014

u 1,9 0.767 0.083 pa ,6 0.276 0.022 k 9 0.070 0.016

u Å 1 0.460 0.023 pa ,7 0.018 0.004

u imm 0.698 0.021 pa ,8 0.196 0.017

u a 0.866 0.012 pa ,9 0.135 0.013

where L denotes the likelihood. MCMC allows us to simulate a set of values from

p ( h ½ x), so that Bayesian inference may be based upon posterior means, for example.

MCMC algorithms typically proceed by updating each parameter, conditioning

upon the value of the others. Thus, knowledge of the dependencies between the

diþ erent parameters in the model is vital. These can be very eý ciently expressed

in the form of a directed acyclic graph (DAG: Gilks et al., 1996, p. 25). A DAG

consists of a series of nodes and interconnecting edges. Square nodes represent

variables whose values are known (e.g. data and prior parameters) and circles

denote unknown variables, typically model parameters that need to be estimated.

An edge between two nodes denotes a direct relationship between the two corre-

sponding variables. As well as providing an eý cient mechanism for representing

dependencies within the model, the DAG is also a very useful tool for developing

and communicating model structure. For illustration, we provide in Fig. 1 the

DAG for the model used to analyse the shags data. If we take independent uniform

prior distributions for all of the parameters, then we obtain the results of Table 2.

The agreement between the classical and Bayesian results is striking.

The classical analysis requires the formulation of the likelihood as a surface in

32 dimensions, and then numerical maximization of that surface. The Bayesian

analysis is described in detail in Brooks et al. (2002), making use of procedures

outlined in Brooks et al. (2000a). As we see from the above statement of Bayes

theorem, it is also necessary here to construct the likelihood; and the existence of

su ý cient matrices, mentioned above, also results in a large computational saving

for the Bayesian analysis. The Bayesian analysis requires no numerical optimization;

instead it estimates the mean (or any other parameter of interest), through

repeated simulations of a Markov chain with stationary distribution p . If the prior

distributions are independent, Unif(0, 1), over all parameters, so that p( h ) 5 1,

then maximizing the likelihood is equivalent to ® nding the mode of the posterior

distribution. This explains the close agreement between Tables 1 and 2. In fact

this agreement can be regarded as a vindication of the asymptotic assumptions

required in the classical analysis.

We discuss the role of the prior distribution, p( h ), later. We return to this

example in Sections 5 and 6.
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Fig. 1. Graphical representation of model for shags data: k ~ Beta(a k , b k ), u imm ~ Beta(a u , b u ), etc. . . .

u denotes a survival probability, k a recovery probability and p a recapture probability; x denotes the data.

For clarity, only the prior parameters for k t and u imm are included.

Table 2. The result of a Bayesian analysis of the shags data corresponding to the classical analysis of

Table 1, with independent U(0,1) prior distributions for each parameter, showing posterior means and

standard deviations (SD)

Survival Recapture Recovery

Mean SD Mean SD Mean SD

u 1,1 0.328 0.038 p0 0.001 0.001 k 1 0.148 0.016

u 1,2 0.439 0.035 p1 0.012 0.002 k 2 0.117 0.012

u 1,3 0.198 0.035 p2 0.034 0.005 k 3 0.122 0.014

u 1,4 0.726 0.061 pa ,1 0.368 0.052 k 4 0.095 0.018

u 1,5 0.441 0.051 pa ,2 0.464 0.034 k 5 0.118 0.014

u 1,6 0.610 0.083 pa ,3 0.064 0.014 k 6 0.047 0.010

u 1,7 0.403 0.076 pa ,4 0.014 0.006 k 7 0.046 0.008

u 1,8 0.259 0.102 pa ,5 0.083 0.011 k 8 0.101 0.014

u 1,9 0.732 0.097 pa ,6 0.279 0.022 k 9 0.069 0.015

u Å 1 0.460 0.023 pa ,7 0.019 0.004

u imm 0.696 0.021 pa ,8 0.199 0.017

u a 0.864 0.013 pa ,9 0.138 0.013

3 Blue-winged teal (Anas discors)

Brownie et al. (1985) describe a well-known ring-recovery study of blue-winged

teal, ringed as young in Saskatchewan, and in some cases later reported dead. The

data are given in Table 3. This study also involved the ringing of teal ringed as

adults, but we do not consider those data here. A Bayesian analysis of these data

is provided by Brooks et al. (2000a) who consider four possible alternative models.

In these models we use the subscript i to denote age dependence, i.e. a separate

parameter for each age of the bird, and t to denote year dependence. Thus, for

example, the model { u 1, t , u i} / k t has year-dependent survival probabilities in the
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Table 3. Recoveries of blue-winged teal marked as young from 1961 to 1973. Data from Brownie

et al. (1985)

Year of recovery (1961 + )
Year of Number

ringing ringed 1 2 3 4 5 6 7 8 9 10 11 12

1961 910 6 2 1 1 0 2 1 0 0 0 0 0

1962 1157 11 5 6 1 1 1 1 0 0 0 1

1963 1394 19 4 4 4 0 0 1 1 0 0

1964 3554 65 25 8 4 2 4 4 1 0

1965 4849 65 17 2 1 6 2 3 1

1966 2555 52 9 8 3 4 2 1

1967 305 3 1 0 1 0 0

® rst year of life, with a separate, but non-year-dependent, survival probability for

each subsequent year of life, and recovery probabilities that are year- but not age-

dependent. The other models considered are submodels of this: for example the

model { u 1 , u a } / k t has ® rst year survival probabilities that are constant over time,

and a single constant annual survival probability u a for all birds aged > 1.

The basic expression for the Bayes Theorem given above may be elaborated to

include models. Thus, if m is a parameter that indexes the various models we

can write

p ( h m , m ½ x)µ Lm (x ½ h m )p( h m ½ m)p(m) (1)

Here, h m is the vector of parameter values under model m , p(m) is the prior

distribution over models, p( h m ½ m) is the prior distribution for h m under model m ,

and Lm(x ½ h m ) is the likelihood for model m . For discussion of model probabilities,

see Carlin & Louis (1996, Section 2.4.2). What we obtain from (1) is the joint

posterior distribution of h m and m . If we seek posterior model probabilities then

these can be obtained from the posterior marginal:

p (m ½ x)µ p(m) ò Lm (x ½ h m )p( h m ½ m) d h

This integrand is simply the expected value of Lm(x ½ h m ) with respect to the prior

and can be estimated by taking the sample mean of the likelihood, given a series

of h m values drawn from the prior. Although, in this case, the method appears to

work well, in many others prohibitively large sample sizes are required in order to

obtain accurate estimates. A wide range of alternative methods are available in

such cases, see Gamerman (1997, Section 7.2), for example. We discuss this issue

further in Section 7.2. We give in Table 4 the posterior model probabilities for the

four models.

For each model, the prior distribution for the diþ erent model parameters were

taken to be independent, Unif(0, 1). We may therefore conclude from Table 4 that

for this choice of prior distributions, of the four models considered, { u 1 , u a } / k t

provides the best description of the data. This was also the conclusion from the

classical analysis of these data by Freeman & Morgan (1992), and their ML

estimates of the model parameters agree well with the posterior means, as in

Section 3. A common defect of classical analyses is that results are often presented

for a `best’ model and do not re¯ ect the stages taken in the model-selection process.

The availability of posterior model probabilities, following a Bayesian analysis,

means that model-averaging may readily take place. However, we can see that, in
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Table 4. Posterior means and standard deviations (SD) under independent uniform priors, for four

models ® tted to the teal data set, from a sample of 10 000 observations from the posterior distribution,

together with the posterior model probabilities, p (m ½ x), associated with each model. From Brooks et al.

(2000a)

u i / k { u 1, t , u i }/ k { u 1, t , u i }/ k t { u 1, u a }/ k t

Mean SD Mean SD Mean SD Mean SD

u 1,1 0.531 0.126 0.525 0.248

u 1,2 0.588 0.089 0.531 0.114

u 1,3 0.431 0.081 0.321 0.083

u 1,4 0.428 0.047 0.484 0.070

u 1,5 0.396 0.047 0.259 0.055

u 1,6 0.352 0.052 0.264 0.077

u 1,7 0.459 0.179 0.158 0.108

u 1 0.420 0.026 0.403 0.039

u 2 0.604 0.040 0.602 0.038 0.445 0.071

u 3 0.694 0.047 0.690 0.049 0.538 0.087

u 4 0.640 0.062 0.636 0.059 0.459 0.094

u 5 0.690 0.073 0.682 0.070 0.578 0.100

u 6 0.624 0.093 0.616 0.091 0.545 0.108

u 7 0.410 0.133 0.397 0.130 0.372 0.134

u 8 0.494 0.207 0.474 0.206 0.468 0.202

u 9 0.729 0.217 0.722 0.219 0.749 0.205

u 10 0.688 0.232 0.695 0.230 0.691 0.233

u 11 0.348 0.240 0.352 0.240 0.355 0.240

u 12 0.493 0.285 0.511 0.285 0.504 0.288

u a 0.598 0.053

k 1 0.058 0.137 0.013 0.005

k 2 0.017 0.008 0.017 0.005

k 3 0.018 0.005 0.024 0.005

k 4 0.035 00.06 0.031 0.004

k 5 0.019 0.003 0.026 0.003

k 6 0.028 0.004 0.031 0.004

k 7 0.019 0.005 0.016 0.004

k 8 0.056 0.022 0.031 0.008

k 9 0.078 0.040 0.035 0.011

k 10 0.140 0.096 0.051 0.020

k 11 0.149 0.123 0.048 0.025

k 12 0.196 0.181 0.047 0.034

k 0.026 0.001 0.026 0.001

p (m ½ x) 0.009 0.054 0.000 0.937

this instance, due to the very high probability associated with model { u 1 , u a } / k t ,

model-averaging is not necessary in this instance. We provide an example of model-

averaging in the next section. For further discussion of model-averaging, from

diþ ering perspectives, see Burnham & Anderson (1998, Ch. 4), Buckland et al.

(1997), Chat® eld (1995), Di Ciccio et al. (1997) and Raftery et al. (1997).

Although, for the family of models considered, { u 1 , u a } / k t is the preferred ® tted

model, it might still provide a poor ® t to the data; we need to consider a measure

of absolute ® t as well as the posterior model probabilities, which gauge relative ® t.

One way to do this is by calculating Bayesian p-values, as discussed in Vounatsou

& Smith (1995) and Brooks et al. (2000a). To compare the data, x, with model-

generated expected values, e, we form the discrepancy measure,

D(x; h ) 5 +
j

( Î x j 2 Î e j)
2
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Fig. 2. Discrepancy plots for the models (a) { u 1, t , u i }/ k ; and (b) { u 1 , u a }/ k t for the teal data.

Corresponding Bayesian p-values are 0.28 and 0.50, respectively. From Brooks et al. (2000a).

We take a random sample { h i , 1 < i < n} from the posterior distribution of h , which

is easily done using an MCMC sampler. For each h i we simulate a new data set,

x i , and plot D(x i ; h i) against D(x; h i). The Bayesian p-value is the proportion of

times that D(x i ; h i) is greater than D(x; h i): p-values close to 0.5 represent a good

® t to the data.

The discrepancy plots for the two models with highest posterior probability are

shown in Fig. 2. The better ® t of model { u 1 , u a } / k t to the data is re¯ ected both in

the p-values (0.50, as compared with 0.28 for model { u 1, t , u i} / k ), and in the smaller

values of D(x; h i ) evident in Fig. 2.

As discussed by Brooks et al. (2000a), there are alternative formulations of

Bayesian p-values and, as with model probabilities, they depend on the prior

distribution chosen.

4 Dippers (Cinclus cinclus)

We now turn to a capture- recapture data set, analysed by Lebreton et al. (1992),

and given in Table 5.

Table 5. Capture- recapture data for European Dippers banded in 1981- 86, taken from Lebreton et al.

(1992) . Here we have pooled the data originally given separately for males and females

Year of Recapture (1981 + )
Year of Number

release released 1 2 3 4 5 6

1981 22 11 2 0 0 0 0

1982 60 24 1 0 0 0

1983 78 34 2 0 0

1984 80 45 1 2

1985 88 51 0

1986 98 52
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We consider four models: u t /pt ; u t /p; u /p; and { u n , u f} /p. This last model has

two survival rates, with a possible change due to a ¯ ood in 1983. For the ordering

of the models given above, and independent Unif(0, 1) prior distributions for each

model parameter, the corresponding posterior model probabilities are 0.000, 0.000,

0.205 and 0.795. In this case there are two reasonable models. The favoured

model, { u n , u f} /p, which is the one chosen by a classical analysis, has a Bayesian

p-value of 0.125, as opposed to 0.069 for the u /p model. If interest focuses on the

survival probability, u n , say, of birds in non-¯ ood years, then for the two models

we obtain the respective posterior means (SDs), 0.561 (0.025) and 0.609 (0.031).

Using model averaging, with respective probabilities of 0.205 and 0.795, we obtain

the estimate, u Ã n 5 0.599 (0.038). By accounting for model-uncertainty, model-

averaging results in a suitably in¯ ated estimate of the standard deviation.

5 Random eþ ects

We might wish to include a variety of diþ erent random eþ ects in models for avian

survival. An empirical Bayes approach is outlined in White & Burnham (1999)

and is available in the program MARK Ð see Burnham (2001). It is quite simple

to include random eþ ects in a full Bayesian analysis, and to illustrate this, we start

with a re-analysis of the shag data from Section 2.

5.1 Random eþ ects for shags

A feature of Table 1 is that if one is primarily interested in estimating survival,

there are many nuisance parameters, estimated as ® xed eþ ects, namely all the

recapture and recovery probabilities. Additionally, we might want to use a random

eþ ect to describe the time-variation in the { u 1, t}. We show in Fig. 3 how we

incorporate a random eþ ect.

The model adopted here is, for example for the { k t },

logit k t 5 l k + e t (2)

We follow Zeger & Karim (1991), and introduce random eþ ects on the logistic

scale. It would also be possible to introduce random eþ ects directly on the

probability scale, for example through beta distributions. However, we expect both

approaches would lead to similar conclusions (cf. Williams, 1988). Here l k is a

basic model parameter that is given a suitably vague prior distribution, say, N(0, r
2
l )

with large r l . The model becomes a random eþ ects model by letting the { e t } be

independent, N(0, r
2
e ), and giving r

2
e a suitable prior. We use an inverse gamma

prior distribution with parameters a e and b e , which we denote by C 2 1(a e , b e ). This

is the customary conjugate prior to use in this case, but many alternatives are, of

course, possible. Thus, precisely as in Zeger & Karim (1991), the { e t } and r
2
e are

basic model parameters and treated equally in the posterior distribution. In

contrast, r l , a e and b e are prior parameters, which are ® xed in order to specify prior

beliefs.

The results of having random eþ ects for { u 1, t}, { pa, t} and { k t} are shown in Table

6. Comparing with Table 1, we see that the eþ ect on the remaining parameters,

such as u a , is minimal. What Table 6 tells us is how we may describe the observed

yearly variation in the u 1 , pa and k parameters through random eþ ects. Table 6 gives

the means and standard deviations of the marginal distributions of the parameters

considered there. The individual parameters, { u 1, t}, { pa, t} and { k t } also have poster-
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Fig. 3. A diagrammatic representation of the changes required to convert a ® xed eþ ects model for

time-varying recovery probabilities (upper diagram) into a random eþ ects model (lower) for the shags

data. Here, circled parameters are simulated, while boxed ones are ® xed in advance, and hence

represent prior knowledge. Solid arrows indicate probabilistic dependencies, while dashed arrows show

deterministic relationships. The random eþ ects model is logit k t 5 l + e t , l ~ N(0, r
2
l ), e t ~ N(0, r

2
e ) and

r
2
e ~ C

2 1
(a e , b e ).

Table 6. The results of ® tting the random eþ ects model of Section 5.1

to the shag data. Priors were as follows: for u imm , u a , p1, p2 and p3 ,

Unif(0,1); for l u 1
, l pa

and l k , N(0,100) ; for r
2
u 1

, r
2
pa

and r
2
k , C

2 1
(1,1).

Mean SD Mean SD

l u 1 2 0.094 0.517 u imm 0.697 0.021

r
2
u 1

1.225 0.534 u a 0.864 0.012

l pa 2 1.973 0.714 p1 0.001 0.001

r
2
pa

2.074 0.873 p2 0.012 0.003

l k 2 2.319 0.242 p3 0.034 0.006

r
2
l 0.695 0.280

ior distributions and, for example, their expectations may be of interest. We might

also want to consider how well a model with just the random eþ ects of Table 6

might describe the data. This could be done using the deviance information criterion

(DIC) of Spiegelhalter et al. (2001), see also Barry et al. (2002).

5.2 Random eþ ects for lapwings

Catchpole et al. (1999) provide a classical analysis of recovery data on British

lapwings (Vanellus vanellus). They ® tted a model with a declining recovery prob-
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Table 7. Recovery data for British Lapwings ringed as chicks during the years 1970 - 1992 . Data from

Catchpole et al. (1999)

Year of recovery
Year of Number

ringing ringed 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

1970 1963 8 3 2 0 0 0 1 2 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1971 2463 4 1 1 2 2 1 3 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0

1972 3092 7 2 2 2 5 1 5 2 1 3 1 1 1 2 0 0 0 0 0 0 0

1973 3442 15 1 1 1 2 3 2 0 1 1 1 1 0 0 0 0 0 0 0 0

1974 3945 12 4 4 7 4 1 1 1 1 0 1 2 1 1 0 0 0 0 0

1975 2564 12 3 0 3 1 1 1 2 0 3 0 0 0 0 0 0 0 0

1976 3304 11 3 5 1 3 4 2 3 0 1 0 1 1 0 0 0 0

1977 3478 13 6 0 5 4 2 1 2 4 0 0 0 1 0 0 0

1978 3165 18 5 2 2 0 5 3 0 0 0 1 0 0 0 0

1979 3351 7 4 7 1 4 3 3 0 1 0 0 1 0 1

1980 3487 12 8 2 2 4 5 3 0 1 2 0 0 1

1981 3939 26 2 3 3 3 4 1 0 0 0 0 0

1982 2881 11 0 6 3 0 1 2 0 0 1 0

1983 4119 19 7 7 4 0 0 2 1 0 0

1984 4036 13 3 2 0 0 0 0 1 0

1985 4867 23 2 5 2 0 3 3 2

1986 4769 13 4 3 3 4 2 2

1987 5027 14 2 1 2 3 2

1988 4804 17 4 4 3 0

1989 3632 11 4 2 4

1990 4170 12 3 3

1991 4314 9 4

1992 3480 18

ability, and with the annual survival probabilities of ® rst-year and adult birds

regressed on measures of winter severity. Here, we reanalyse a subset of these data,

shown in Table 7, chosen to simplify the model, so that the recovery probability

parameter can be taken as constant. Details are given in Barry et al. (2002). We

write u i j as the probability that a bird ringed in year i survives its j th year of life,

given that it was alive at age j 2 1, and consider the random eþ ects model

logit u i j 5 c j + bi + j + e i j (3)

This is a mixed model: the {c j} are ® xed-eþ ect parameters measuring age depend-

ency, {bk } are random year eþ ects, and { e i j} are error terms. We assume that

bk ~ N(0, r
2
b ) and e i j ~ N(0, r

2
e ). Thus, the model of (3) is a straightforward general-

ization of the model of (2), to include several ® xed eþ ects, re¯ ecting general age

variation, and two components of variance. An attractive feature of this formulation

is the simple and natural way in which it can allow the inclusion of overdispersion,

through r
2
e . Cf. Lebreton et al. (1992), who account for overdispersion in the

traditional way of scaling up standard errors by an overdispersion factor re¯ ecting

the lack of ® t of the model to the data. The parameters given prior distributions in

(3) are {c j }, r
2
b and r

2
e , which combine with a prior distribution for the recovery

probability to complete the prior model speci® cation.

The model (3) is readily extended to incorporate group covariates which vary

over years, in common for all the birds of that year, to produce the mixed model

logit u i j 5 c j + x ¢i j b + bi + j + e i j (4)

where x i j denotes a vector of covariates.
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For the data of Table 7, the ® rst-year survival probability was found not to vary

with weather. We consider the following model, involving just two age-classes for

survival,

logit u i1 5 c 1 + bi + j + e i j

(5)

logit u i j 5 c a + b x i + j + bi + j + e i j , for j > 1

in which xk denotes the number of days with lying snow in the third quarter of

year k. We may ® t this model, (a) with only c 1 , c a and b and no random eþ ects,

(b) with added {bk } only, (c) with added { e i j} only, and (d) with added {bk } and

{ e i j}. The resulting Bayesian p-values are: (a) 0.26, (b) 0.60, (c) 0.63, (d) 0.76. We

conclude that the basic regression of adult annual survival on snow can be improved

by the addition of either random yearly variation in addition to that explained by

the regression, or random overdispersion, but that both eþ ects do not appear to be

necessary. For models (a) and (c), the posterior means and standard deviations for

b , from (5), are, respectively, 0.45 (0.07) and 0.38 (0.09). As expected, the

addition of overdispersion increases the estimate of standard deviation. What is

also interesting is the change in the estimate of b , which may re¯ ect in¯ uential

data points whose presence is absorbed by the overdispersion.

The analysis of covariates presented here is rudimentary and illustrative only. In

practice, of course, we have the situation faced by Catchpole et al. (1999), in which

there are very many alternative possible weather covariates vying for possible

inclusion in the model. Biological knowledge needs to be considered here. While

one may devise ad hoc statistical approaches based on classical stepwise procedures,

augmented by AIC (Catchpole et al., 1999, 2000), we believe that modern Bayesian

methods may provide an eý cient, viable, alternative way of proceeding, and we

describe these methods next.

6 Dealing with covariates

We saw in the previous section that we are often interested in the eþ ects of

covariates measuring aspects of the climate, for example, on survival. We are also

interested in individual diþ erences. Adding or subtracting single covariates to a

model might well correspond to the diþ erent neighbouring models that RJMCMC

is designed for. In this section, we provide an illustration of RJMCMC at work on

the shag data, for a single individual covariate indicating sex. Female shags are

usually mute, so that when adults are recaptured, it can be easy to sex them. The

covariate takes one of three possible values, 0 (unknown), 1 (male) or 2 (female).

The `unknown’ code refers primarily to birds ringed as chicks which were not later

observed breeding. Thus, we can expect these birds to have smaller estimated

survival and recapture probabilities. This has been found to be the case, and in the

analysis below we focus on the eþ ects of the male and female codes, 1 and 2

respectively, for each of the model parameters.

In Table 8 we give the posterior probabilities, evaluated using RJMCMC, for

models based on { u 1 , u imm , u a } /{ p1 5 p2 5 p3 5 p, pa } / k , with a common probability

p of recapture in the ® rst three years of life, and no time dependence in any

parameter. The models are binary coded to indicate which terms include a sex

eþ ect, e.g. 001/01/0 includes a sex eþ ect for u a and pa .

As an illustration, for model 001/00 /0 we write u a , in self-explanatory notation, as
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Table 8. Models speci® ed according to whether (1) or not (0) a sex eþ ect has been included in the

parameters of the model for, in order, u 1, u imm , u a, p, pa and k , and the corresponding posterior model

probabilities

Model Prob Model Prob Model Prob Model Prob

000/00/0 0.0519 101/10/0 0.0027 101/11/0 0.0000 110/10/1 0.0000

100/00/0 0.0003 011/10/0 0.0089 011/11/0 0.0000 001/10/1 0.0641

010/00/0 00008 111/10/0 0.0001 111/11/0 0.0000 101/10/1 0.0003

110/00/0 0.0000 000/01/0 0.0032 000/00/1 0.0062 011/10/1 0.0011

001/00/0 0.1500 100/01/0 0.0000 100/00/1 0.0000 000/01/1 0.0004

101/00/0 0.0008 010/01/0 0.0001 010/00/1 0.0001 010/01/1 0.0000

011/00/0 0.0025 001/01/0 0.0010 001/00/1 0.0200 001/01/1 0.0002

111/00/0 0.0000 101/01/0 0.0000 101/00/1 0.0001 011/01/1 0.0000

000/10/0 0.1658 011/01/0 0.0000 011/00/1 0.0004 000/11/1 0.0011

100/10/0 0.0008 000/11/0 0.0102 111/00/1 0.0000 100/11/1 0.0000

010/10/0 0.0029 100/11/0 0.0001 000/10/1 0.0193 010/11/1 0.0000

110/10/0 0.0000 010/11/0 0.0002 100/10/1 0.0001 001/11/1 0.0005

001/10/0 0.4801 001/11/0 0.0033 010/10/1 0.0003 101/11/1 0.0000

logit ( u a ) 5 l ,

for birds of unknown sex, and

logit u a,M 5 l + s M

logit u a,F 5 l + s F

for birds of unknown sex, where s M ~ N(0, r
2
s ), s F ~ N(0, r

2
s ) and r

2
s ~ C 2 1(a s , b s ).

The posterior means and standard deviations are as follows:

l 1.1673 (0.2216)

s M 1.1067 (0.2705)

s F 0.6128 (0.2519)

s 5 s M 5 s F 0.9004 (0.2407)

r
2 1.1164 (0.8764)

Note that s M and s F are thus random eþ ects. It might be more sensible to regard

them as ® xed eþ ects. We see from Table 8 that there is a high probability of a sex

eþ ect for both p and u a . Because of the way that the sex code was adjusted for

Table 9. Posterior probabilities of a sex eþ ect in

individual parameters for the shags data. These

are obtained from summing the posterior model

probabilities of Table 8 over all models that

include a sex eþ ect for that parameter

Parameter Probability

u 1 0.0053

u imm 0.0174

u a 0.7362

p 0.7618

pa 0.0205

k 0.1143
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birds ringed as chicks, the result for u a is likely to be biased. However, the result

for p is interesting, as the value for young males is larger than that for young

females, which we would expect from the biology, as attempts at early breeding are

far more common in males than in females, resulting in the higher value of p for

males. When we just consider birds ringed as adults, for which there is relatively

little change in the sex speci® cation following marking, we obtain posterior means

u a, M 5 0.8912, and u a, F 5 0.8161. Note that Catchpole et al. (1998), from data on

birds ringed only as adults, found the ML estimate u Ã a 5 0.843 (0.016). In this case

the probability of a sex eþ ect for adult survival is 0.89. No previous study has

found a sex diþ erence in the survival of adult shags.

7 Discussion

In this paper we have emphasized the positive features of the modern Bayesian

approach to analysing ringing data. Our enthusiasm derives more from being able

to derive posterior model probabilities and perform model averaging, as well as to

devise simply coherent integrated ways to consider variable selection, rather than

being able to incorporate prior beliefs through informed priors. Undoubtedly,

however, this latter aspect is attractive and important. In this section of the paper

we cover some of the practical features that need to be considered before Bayesian

analyses can take place. The ® rst issue is one of how to proceed computationally.

7.1 Computing

The paper by Link & Cam (2000) demonstrates how the formidable BUGS

package (see Spiegelhalter et al., 1996a, b) may be easily used for basic Bayesian

analyses of ringing data, including random eþ ects models. Brooks et al. (2000a)

provide a full discussion of the relative advantages and disadvantages of using

BUGS. Implementing BUGS code requires some familiarity with the S-plus

computing language (Venables & Ripley, 1999). However WinBUGS, the windows

version of BUGS comes with some very nice and well-explained examples. Our

experience is that it is not diý cult to learn how to use BUGS. An illustration is

provided by the BUGS code of the Appendix. The BUGS package will handle

multinomial data. However, greater computational eý ciency will result from

individually tailored programs written in compiled languages such as FORTR AN.

The shag models that we have considered in this paper require age-dependent

structures that do not result in straightforward multinomial models and, for the

shag modelling of this paper, it was necessary to use speci® c FORTR AN programs.

The same is true of reversible jump MCMC (RJMCMC) methods (Green, 1995),

which we believe have enormous potentialÐ see Section 7.2. We have not yet

carried out a formal e ý ciency comparison between classical and Bayesian analyses.

We expect that relative performance will depend critically upon both models and

data. However, in applications such as that of Section 6, the use of RJMCMC

could result in the most e ý cient approach. We plan to make this kind of comparison

in future work.

7.2 Model averaging and posterior model probabilities

The posterior distribution of (1) may be explored using RJMCMC, which allows

us to move between models as well as to consider diþ erent values for model
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parameters. For RJMCMC to work well in practice, we need to be able to move

readily between the diþ erent states of the relevant Markov chain. This is generally

very easy to achieve when we have a nested model structure and we move from

model to model by simply adding or deleting parameters.

A primary advantage of RJMCMC is that it focuses on the posterior distribution

to evaluate posterior model probabilities. This is in contrast to the standard

formulation of posterior model probabilities, which involves averaging over a prior

distribution. As found in Brooks et al. (2000a), this can sometimes result in an

impractical procedure, which requires prohibitive amounts of computer time, as

discussed in Section 3.

The performance of the standard approach to model probabilities depends on

how similar the prior and likelihood are. If they are very diþ erent, most samples are

from the mode of the prior, and we get very small likelihood values. Occasionally, we

will get a draw from the tail of the prior, and then get a large contribution from

the likelihood. If the prior and likelihood are similar, then this happens to a lesser

degreeÐ we learn about the likelihood much more quickly and estimate model

probabilities more eý ciently. The work of Section 6 was very easy to program as,

in that case, the RJMCMC moves were very easy to add. For the work of Sections

3 and 4, the RJMCMC updates involved moves that added a larger number of

variables to a model, which is far more diý cult to do in an eý cient way. In that

case, we evaluated mode probabilities using the standard approach that worked well.

7.3 Prior sensitivity

Model-probabilities and Bayesian p-values can be sensitive to the choice of prior

distributions and examples of this sensitivity are provided by Brooks et al. (2000a).

A striking direct illustration of prior sensitivity is given by Brooks et al. (2000b),

which we repeat here. In Table 10 we present a historical data set describing the

recoveries of Herring gulls (Larus argentatus). The u i / k model is ® tted to these data

by Vounatsou & Smith (1995). In the case of this extensive data set, with so few

recoveries after 12 years of life, it is inevitable that a model with fully age-dependent

annual survival probabilities will produce parameter estimates that re¯ ect the prior

distribution when available data are sparse. This is seen clearly from the results of

Table 11. There is a detailed discussion of these results in Brooks et al. (2000b).

In choosing between competing models for a data set, Brooks et al. (2000) argue

in favour of selecting models that are not sensitive to the choice of prior. Shown in

Fig. 4 are some of the results from ® tting the { u 1 , u a } / k t model to the teal data. In

this case, except when an inappropriate prior distribution is chosen for the time-

varying recovery probabilities, the data dominate the posterior distribution, so that

changing the prior distributions for u 1 and u a has little eþ ect. Brooks et al. (2000a)

speculate that, as a general rule, models for ring recovery data are more likely to

be sensitive to prior choice than models for recapture data.

In the work of this paper we have used vague prior distributions. However it is

simple to impose restrictions on prior distributionsÐ for example, one might want

to impose the restriction that ® rst-year survival probabilities are less than adult

survival probabilities. In a single study of this we found that the restriction was

never violated, but in other applications such restrictions could be important. A

further aspect of prior sensitivity is sensitivity relative to an informed prior, making

use of expert beliefs. We have not considered that in this paper.
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Table 11. The in¯ uence of the prior distribution when the u i / k model is ® tted to the gull data. For k

we use Unif(0,1) priors throughout, while for the u parameters we use either Unif(0,1) or Beta(4,2) or

Beta(20,5). These priors are arti® cial and are chosen for illustration only. Note that for a Beta(a, b)

distribution, the mean is a/(a + b) and the variance is ab/{(a + b)
2
(a + b + 1)}. The priors for all parameters

are independent. From Brooks et al. (2000b)

Unif(0,1) Beta(4,2) Beta(20,5)

Paremeter mean st.dev. mean st.dev. mean st.dev.

u 1 0.550 0.015 0.551 0.015 0.556 0.015

u 2 0.636 0.020 0.636 0.019 0.643 0.019

u 3 0.739 0.022 0.740 0.023 0.745 0.022

u 4 0.783 0.024 0.784 0.024 0.787 0.023

u 5 0.682 0.031 0.684 0.031 0.696 0.029

u 6 0.677 0.037 0.679 0.037 0.698 0.035

u 7 0.736 0.044 0.734 0.043 0.754 0.038

u 8 0.772 0.048 0.772 0.045 0.788 0.040

u 9 0.790 0.050 0.789 0.049 0.801 0.043

u 10 0.759 0.060 0.760 0.058 0.782 0.047

u 11 0.768 0.067 0.768 0.063 0.793 0.051

u 12 0.614 0.086 0.629 0.080 0.710 0.061

u 13 0.799 0.088 0.794 0.084 0.818 0.057

u 14 0.530 0.118 0.574 0.104 0.707 0.071

u 15 0.700 0.137 0.716 0.115 0.794 0.071

u 16 0.751 0.142 0.751 0.118 0.814 0.067

u 17 0.859 0.124 0.820 0.112 0.840 0.065

u 18 0.712 0.161 0.726 0.129 0.803 0.072

u 19 0.832 0.139 0.802 0.118 0.832 0.068

u 20 0.496 0.193 0.603 0.144 0.764 0.078

u 21 0.751 0.191 0.751 0.145 0.816 0.072

u 22 0.502 0.223 0.628 0.161 0.786 0.078

u 23 0.680 0.236 0.721 0.156 0.813 0.075

u 24 0.337 0.233 0.577 0.177 0.777 0.079

u 25 0.497 0.294 0.670 0.175 0.804 0.076

u 26 0.495 0.288 0.662 0.177 0.804 0.077

u 27 0.490 0.289 0.660 0.176 0.805 0.077

u 28 0.506 0.286 0.667 0.180 0.800 0.080

u 29 0.494 0.293 0.664 0.177 0.799 0.079

k 0.035 0.001 0.035 0.001 0.035 0.001

7.4 Convergence issues

We have not dealt explicitly in this paper with the problem of how to decide when

the MCMC iterative procedures used reach equilibrium. This is discussed in

Brooks et al. (2000a). Interestingly, we have found that convergence for the models

that we have considered has been rapid, and better than expected. Typically,

convergence was within 100- 1000 iterations. This is most likely due to the

constrained state-space imposed by the fact that the parameters of interest typically

lie between zero and one. In practice, it is always important to check simulation

performance and there are various simple-to-use convergence assessment tech-

niques proposed in the literature (see for example, Brooks & Roberts, 1999).

An interesting potential of Bayesian analysis is that it can produce unique

estimates when a likelihood surface has a ¯ at ridge. An illustration of this is

discussed in Brooks et al. (2000b), who explain that such a feature is sometimes

associated with slow MCMC convergence. While this may be seen as an advantage
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Fig. 4. Posterior histograms of k 12 , u 1 and u a under the { u 1, u a }/ k t model for the teal data, from a

sample of 10 000 observations from the posterior distribution, with corresponding prior densities

superimposed. The top row corresponds to beta(1,4) priors for the two u parameters, the second row

to Unif(0,1) and the bottom two rows to beta(4,1) priors; a Unif(0,1) prior is adopted for all the k

parameters in the ® rst three rows and a beta(4,1) prior for the bottom row. From Brooks et al. (2000a).

of a Bayesian approach, circumventing the often thorny issue of parameter redun-

dancy of models, it is also a potential pitfall if one does not realize the existence of

the likelihood ridge.

8 Conclusions

We ® rmly believe that MCMC methods, especially RJMCMC approaches, will

prove to be invaluable tools for the future analysis of mark recovery and recapture

data. The work we have reported on using RJMCMC methods is ongoing, and we

are still exploring its potential. We therefore agree with Schwartz & Seber (2000)

that, `with the advent of the Gibbs sampler . . . there will be an upsurge of interest

in Bayesian methods . . .’ .
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Appendix. BUGS code

The following BUGS code ® ts the random eþ ects model (3) to the lapwing recovery

data of Table 7.
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